On-farm techniques to increase resilience against the impact of dry spells on vulnerable sub-Saharan rainfed agricultural systems

Hodson Makurira
University of Zimbabwe
Presentation layout

• Introduction and challenges
• Research approach
• The Converging Evidence Approach
• Results and analysis
• Conclusion
Introduction

• MDGs on food, hunger & poverty. How far is SSA in achieving these?

• Majority of poor rely on rainfed systems;

• Need to manage dry spell occurrences between & during seasons;

• More efficient interventions desperately required for improved food security.
Challenges

• Link between agronomical successes and hydrological processes is not well understood;

• Obtained yields in rainfed systems below 1 t ha\(^{-1}\) against potentials of 3 t ha\(^{-1}\) and more (Rockström et al., 2004, Bhatt et al., 2006)

• Water productivity is a function of soil water and nutrient balances;

• Both are scarce!

• But are we optimising the little that is available?

• More research needed to help vulnerable communities…………
Productivity trends (maize)

Source: FAO (2006)
SSI Programme

- Multi-disciplinary
- 8 PhDs, 2 PDs
- MSc
- 2 catchments (SA and TZ)
- Participatory research
A hypothetical illustration of options for improving agricultural water management in cropping systems (Nyagumbo et al, 2009).
Tanzania research

The Makanya catchment

• Rainfall ~ 500 mm/season,

• Bimodal,

• Predominantly rainfed,

• Increasing trend of dry spells (Enfors 2008; Mul 2009),

• Maize staple food crop.
Tested techniques

- RWH (diversions)
- Ripping
- Fanya juus
- etc
Ripping

Fanya juu

Runoff diversions
Direct observations

- Rainfall
- Runoff
- Soil Moisture
- Soil evaporation
- Runoff
- Yield

Indirect observations

- Geophysical (ERT)
- Modelling
 - HYDRUS2D
 - Spreadsheet
RESULTS
Rainfall and RWH

Cumulative water available [mm]

Date

Site 3

Cumulative water available [mm]

Date

Site 4

Cumulative water available [mm]

Date
Soil moisture variation

![Diagram showing soil moisture variation with distance from the first trench.](image)
Crop productivity

- Grain output (kg m\(^{-2}\))
- Water available (kg m\(^{-3}\))
- Transpired water (kg m\(^{-3}\))
- Economic ($ m\(^{-3}\)) or vice versa?
Crop productivity

Up to 3x grain yield

heterogeneity conditions created
ERT results
Modelling output

<table>
<thead>
<tr>
<th>Site 3</th>
<th>mm/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Without</td>
<td>1.0</td>
</tr>
<tr>
<td>With</td>
<td>1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site 4</th>
<th>mm/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Without</td>
<td>0.7</td>
</tr>
<tr>
<td>With</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Spreadsheet model output
(a) Current cultivation practices (control)

(b) *fanya juu* technique (without diversion)

(c) *fanya juu* technique (with diversion)

(d) reduced spacing to 3m

(e) increased spacing to 20m
Conclusions

• Heterogeneity conditions created by the tested techniques facilitate diversity and, hence, increased scope for resilience against dry spell impacts;

• Productivity increases with more combinations of CA and water diversions;

• Unproductive processes still high, regulate infiltration to what is required by plants (storage);

• Upstream-downstream interactions not sufficiently addressed; Is there possibility of conflicts?

• Socio-economic questions still exist on viability of the techniques at household level;

• How is success of adoption and uptake measured?
Acknowledgements

The work reported here was undertaken as part of the Smallholder System Innovations in Integrated Watershed Management (SSI) Programme funded by the Netherlands Foundation for the Advancement of Tropical Research (WOTRO), the Swedish International Development Cooperation Agency (SIDA), the Netherlands Directorate-General of Development Cooperation (DGIS), the International Water Management Institute (IWMI) and UNESCO-IHE Institute for Water Education. The Soil-Water Management Research Group (SWMRG), Sokoine University of Agriculture, Tanzania provided field support.